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. 

Friction affects several aspects important to the design 
of kinematic couplings, but particularly the ability to 
reach its centered position is fundamental1 It becomes 
centered when all pairs of contacting surfaces are fully 
seated even though a small uncertainty may exist about 
the exact center where potential energy is minimum. For 
many applications, centering ability is a good indicator 
for optimizing the coupling design. Typically, the 
coupling design process has been largely heuristic based 
on a few guidelines [Slocum, 19921. Several simple 
kinematic couplings (for example, a symmetric three-vee 
coupling) are compared for centering ability using 
closed-form equations. More general configurations 
lacking obvious symmetries are difficult to model in 
this way. A unique kinematic coupling for large 
interchangeable optics assemblies in the National 
Ignition Facility motivated the development of a 
computer program to optimize centering ability. 
However, space limits the description of the program to 
the basic algorithm. Currently the program is written in 
MathcadTM Plus 6 and is available upon request? 

other force device. Ideally, the nesting force causes all 
surfaces to engage freely and with uniform loading. 

Abstract 

Background 
Kinematic couplings serve many applications that 
require: 1) separation and repeatable engagement, and/or 
2) minimum influence that an imprecise or unstable 
foundation has on the stability of a precision 
component. An object that is rigid, relatively speaking, 
requires six independent constraints to exactly constrain 
six rigid-body degrees of freedom. An object with one or 
more flexural degrees of freedom requires additional 
constraints; for example, a four-legged chair flexes 
torsionally to fit the shape of the floor. This paper deals 
only with six-constraint couplings supported through 
local surfaces and held in contact by a consistent nesting 
force. Quite often tbe nesting force is the weight of the 
object being supported, or it may result from a spring or 

This work was performed under the auspices of the U.S. 
Department of Energy by Lawrence Livermore National 
Laboratory under contract No. W-7405-Eng-48. 
* In this paper, the term kinematic coupling refers to 
any connection device based on pairs of contacting 
surfaces that provide six constraints in an ideal sense. 
* Email requests to hale6@llnl.gov. 

Figure 1 shows the two classic types of kinematic 
couplings, the three-vee coupling (left) and the conevee- 
flat coupling (right). The symmetry of three vees offers 
several advantages: more uniform contact stresses, 
thermal expansion about a central point and reduced 
manufacturing costs due to identical features. 
Conversely, the cone (or the more kinematically correct 
tetrahedral socket) offers a natural pivot point for angular 
adjustments. The three-vee coupling is the natural choice 
for adjustments in six degrees of freedom. 

Figure 1 The three-vee coupling has six constraints 
arranged in three pairs. The cone-vee-and-flat coupling 
has six constraints arranged in a 3-2-l configuration. 

Figure 2 The three-tooth coupling forms three 
theoretical line contacts between cylindrical teeth on one 
half and flat teeth on the other half. 
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The local contact areas typical of these kinematic 
couplings are quite small and require a Hertzian analysis 
to ensure a robust design. Greater durability is achieved 
by curvature matching such as a ball against a concave 
surface and/or by using ceramic materials such as silicon 
nitride balls against tungsten carbide gothic arches. 
Designs based on line contact rather than point contact 
offer a significant increase in load capability. For 
example, a kinematic equivalent to three vees is a set of 
three balls in three conical sockets with either the balls 
or the sockets supported on radial-motion flexures. 
Alternatively, the three-tooth coupling shown in Figure 
2 is based on three theoretical lines of contact formed 
between cylindrical and flat teeth. Each line constrains 
two degrees of freedom giving a total of six constraints. 
Manufactured with three identical cuts directly into each 
coupling half, the teeth must be straight along the lines 
of contact but other tolerances can be relatively loose. 

Friction Effects 
Friction affects at least four important characteristics of 
a kinematic coupling as indicated by order-of-magnitude 
estimates that all include the coefficient of friction u. 

1) Repeatability 

. 2) Kinematic support lf,l~cLfn 

3) Stiffness ( 1 
113 k =k t 2-2v l- ft 

n 2-v z 

= 0.83 k,, 

4) Centering ability f c=o.5-1.3p 
fn 

Tangential friction forces at the contacting surfaces 
may vary in direction and magnitude depending how the 
coupling comes into engagement. This affects the 
repeatability of the coupling and the kinematic support 
of the precision component. The estimate for 
repeatability is the unreleased frictional force multiplied 
by the coupling’s compliance. The estimate is derived as 
if the coupling’s compliance in all directions is equal to 
a single Hertzian contact carrying a load P and having a 
relative radius R and elastic modulus E. The frictional 
force acts to hold the coupling off center in proportion 
to the compliance. This estimate will underestimate the 
repeatability if the structure of the coupling is relatively 
compliant compared to the contacting surfaces. 

Kinematic support is important for stability of 
shape of the precision component. The estimate for 

kinematic support simply gives a bound on the 
magnitude of friction force acting at any contact surface. 
A sensitivity analysis of the precision component will 
determine a tolerable level of friction that the coupling 
can have. This may drive the design to include flexure 
elements and/or procedures to release stored energy. If 
repeatable engagement is not so important, then 
constraints using rolling-element bearings offer very’low 
friction. For example, a pair of cam followers that 
contact with crossed axes is equivalent to a ball on a flat 
but with twenty or so times less friction. 

In some cases frictional overconstraint is valuable 
for increasing the overall system stiffness. Provided the 
tangential force is well below what would initiate 
sliding, the tangential stiffness of a Hertz contact is 
comparable to the normal stiffness [Johnson, 19851. 
This was important for the National Ignition Facility 
where frictional overconstraint stiffened the first 
torsional mode of optics assemblies sufficiently to meet 
dynamic stability requirements. 

Centering ability can be expressed as the ratio of 
centering force to nesting force and the estimate shown 
is typical. A larger ratio means the coupling is better at 
centering in the presents of friction. Later, it is 
convenient to express centering ability as the coefficient 
of friction where the ratio goes to zero. For the estimate, 
the limiting coefficient of friction is 0.5/1.3 = 0.38. The 
coupling will center if the real coefficient of friction is 
less than the limiting value. 

Centering Ability 
The contacting surfaces of a kinematic coupling come 
into engagement sequentially unless it is placed 
precisely at the exact center. The path to center is 
constrained by the surfaces already in contact. For 
example, five surfaces in contact constrain the coupling 
to slide along a well-defined path. Four surfaces in 
contact allow motion over a two-dimensional surface of 
paths and so forth. Although there are infinitely many 
paths to center, only the limiting case is of practical 
interest for determining centering ability. Further, it is 
reasonable to expect the limiting case to be one of six 
possible paths that have five surfaces in contactP This 
point is demonstrated using the three-vee coupling. 

For any given path to center, the centering force 
that results from the nesting force may be derived using 
Statics and the Coulomb law of friction. Figure 3 shows 

3 The exception to this statement is the ball-cone 
constraint of the cone-vee-flat coupling since the cone 
provides only one constraint until the ball is fully 
seated. A tetrahedral socket remedies this situation. 
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examples of centering force (per unit nesting force) 
plotted versus the coefficient of friction. These curves 
were generated from closed-form equations yet to be 
discussed. Although the curves look simple, the 
equations are rather tedious to develop even when the 
coupling has simple geometry and the load is 
symmetrical. Compound this with the possible number 
of paths to center and it becomes obvious that a 
systematic, computer-based approach is essential for 
designing more general configurations of couplings. 

0.6 
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0.3 

I- Eq. 2: 3V translate along V 
-&- Eq. 3: CW translate along V 
-Q- Rq. 4: 3T translate on 4 faces 

Figure 3 Centering force versus coefficient of friction. 
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Figure 4 shows a symmetric three-vee coupling 
rotating about its instant center to reach the center 
position. This path has five surfaces in contact and is 
the limiting case along with five other symmetrically 
identical paths. Equation 1 provides the centering force 
for this path assuming the nesting force is uniformly 
carried by three balls. Note, the sides of the vees are an 
angle a with respect to the plane of the three balls. In 
addition, there are two sets of symmetrically identical 
paths having four surfaces in contact. Equation 2 
provides the centering force for the more limiting path 
where the coupling translates radially along one vee. The 
other path is rotation about one ball. 

f,= sina-pcosa &CL -- 
f, 2(cosa+ltsina) 3cos.a (1) 

f _ &44+3tan*a sina-4u c- P 
f, 3 JGGZ‘Gcoscx+&j.ttancX 

[ 3 

-- (2) 3cosa 

This example shows that the path with five surfaces 
in contact has less centering force than either path with 
four surfaces in contact. This may not be universally 
true for a general kinematic coupling. That is, a path 

with five surfaces in contact may have greater centering 
force than another path with four surfaces in contact. 
However as the coupling continues toward center, the 
centering force cannot increase as it picks up the fifth 
contact surface. Thus, we need only look at paths with 
five surfaces in contact to determine the limiting case. 

Figure 4 The limiting case for centering occurs when 
the three-vee coupling slides on five surfaces producing 
rotation about its instant center. 

It is also useful to compare the centering forces for 
the other types of kinematic couplings. Figure 5 shows 
the cone-vee-flat coupling translating along its vee. This 
path is underdetermined for a conical socket but is 
representative of the limiting case. It was chosen to 
simplify the expression for centering force given in 
Equation 3. Referring back to Figure 3, it may come as 
a surprise that the cone-vee-flat coupling has the least 
centering ability of the three types. However, 
significantly improvement is possible by carrying more 
load with the cone and by increasing the cone angle. 

f, _ sina-ucosa I-L CL ---- 
KS 3(cosa+ysina) 3cosa 3 (3) 

Figure 5 The limiting case for centering occurs when 
the cone-vee-flat coupling slides on the vee and flat with 
the cone seeking center. 
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Equation 4 gives the centering force for the three- 
tooth coupling as it translates on four surfaces. The 
centering force with five surfaces in contact is very 
difficult to model in closed form but behaves similarly 
to the limiting case for the three-vee coupling. For 
example, the limiting coefficient of friction for the 
three-tooth coupling is 0.319 at cx = 45” or 0.352 at a = 
60”. The limiting coefficient of friction for the three-vee 
coupling is 0.317 at a = 45” or 0.364 at a = 60”. 

f,= r 44+ tan’s sina-4p 
r 1 (4) 
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Figure 6 Three views of the optic assembly supported 
by six constraints. The arrows are proportional to forces. 

Centering Optimization Algorithm 
As discussed, the limiting coefficient of friction occurs 
along a path defined by five surfaces in contact. There 
are six such paths each corresponding to one of six 
surfaces not in contact. Using [6 x 61 transformation 
matrices, it is straight forward to reflect contact 

stiffnesses to a global coordinate system (CS). Adding 
any five results in a stiffness matrix for the coupling 
that has zero stiffness along the path. The eigenvector 
corresponding to the zero eigenvalue gives the direction 
that the coupling slides in @he global CS. Using the 
same transformation matrices, a local sliding vector is 
determined for each surface. Then a force-moment vector 
is calculated for each surface using the Coulomb law of 
friction and a unit normal force. Transforming back to 
the global CS, the vectors are assembled into a matrix 
that when multiplied by a vector of contact forces gives 
the force-moment resultant on the coupling. The inverse 
of the matrix is useful because it gives the contact forces 
for a given coefficient of friction and applied load. Then 
the equation for the surface not in contact is solved for 
the coefficient of friction that makes its normal force 
zero. This is done for each surface not in contact, and the 
minimum is the limiting coefficient of friction. 

Figure 6 shows one example of an optics assembly 
for the National Ignition Facility. This example has four 
angular parameters: the axis angle of two vee blocks 
(constraints l-2 and 3-4); the more shallow face angle of 
the vee blocks (constraints l-3); the steeper face angle 
(constraints 2-4); and the angle of the upper constraints. 
The user determines the optimum by adjusting the 
nominal parameter vector 8 based on curves that show 
the effect of individually varying parameters. Figure 7 
shows the optimal parameter set for this example. 
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Figure 7 Limiting coefficient of friction versus 
varying model parameters. All curves pass through the 
nominal parameter set as indicated by the dashed line. 
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